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Abstract. A set D of disks in the plane is said to be pierced by a point set P if each disk in
D contains a point of P . Any set of pairwise intersecting unit disks can be pierced by 3 points
(H. Hadwiger and H. Debrunner, Ausgewählte Einzelprobleme der kombinatorischen Geometrie
in der Ebene, Enseignement Math, 1955). Stachó and independently Danzer established that any
set of pairwise intersecting arbitrary disks can be pierced by 4 points (L. Stachó, A Gallai-féle
körletűzési probléma megoldása, in Matematikai Lapok, 32(1-3), p. 19-47, 1981-84. L. Danzer, Zur
Lösung des Gallaischen Problems über Kreisscheiben in der Euklidischen Ebene, Studia Scientiarum
Mathematicarum Hungarica, 21, p. 111-134, 1986.) Existing linear-time algorithms for finding a set of
4 or 5 points that pierce pairwise intersecting disks of arbitrary radius use the LP-type problem as
a subroutine. We present simple linear-time algorithms for finding 3 points for piercing pairwise
intersecting unit disks, and 5 points for piercing pairwise intersecting disks of arbitrary radius. Our
algorithms use simple geometric transformations and avoid heavy machinery. We also show that 3
points are sometimes necessary for piercing pairwise intersecting unit disks.

1 Introduction

Let D be a set of pairwise intersecting disks in the plane. Helly’s theorem states that if every set of
3 disks in D has a non-empty intersection, then all disks in D can be pierced by 1 point, in other
words, ∩D is non-empty [10, 11]. Finding a piercing point set is more difficult if the disks in D only
intersect pairwise and D contains groups of 3 disks that have no common intersection. Danzer [4]
and Stachó [16] independently showed that such a set D can be pierced by at most 4 points.
Danzer’s proof is based on his first unpublished proof in 1956, while Stachó’s proof uses similar ideas
that were used in his previous construction of 5 piercing points in 1965 [15]. Even though Danzer
proved that 4 points are sufficient, the proof is not constructive [4]. Stachó’s construction is simpler,
but it is still not simple enough to be easily turned into a subquadratic algorithm [15, 16]. Har-Peled
et al. [9] presented the first deterministic linear-time algorithm for finding 5 piercing points of a set
D by formulating the piercing problem as an LP-type problem. An LP-type problem is an abstract
generalization of a low-dimensional linear program. Chazelle and Matoušek showed that LP-type
problems can be solved in deterministic linear time if we have a constant-time violation test and the
range space has bounded VC-dimension [3]. More recently, Carmi et al. [2] presented a linear time
algorithm for finding 4 piercing points. Their algorithm requires the computation of the smallest
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disk that intersects every disk in D, which they formulated as an LP-type problem [3, 13]. They pose
as an open problem to find the piercing set without using linear programming.

As for lower bounds on this problem, Grünbaum [6] provides a set of 21 pairwise intersecting
disks that cannot be pierced by 3 points. Later, Danzer [4] reduced the number of disks to 10. This
is close to optimal since every set of 8 pairwise intersecting disks can be pierced by 3 points [15].
We will give an alternate proof to this result in Section 1.2. Danzer’s construction is difficult to
verify since the positions of the disks cannot be visualized easily. Har-Peled et al. [9] gave a simpler
construction with 13 disks.

Hadwiger and Debrunner [7] showed that if all the disks in D have the same radius, then 3
points are sufficient to pierce D. Their algorithm computes the smallest regular hexagon enclosing
the centers of all disks in D. It is not clear how one can simply find such a hexagon in linear time.

1.1 Our Contributions

We first show that 3 points are always sufficient to pierce 8 pairwise intersecting disks. We then
present two deterministic linear time algorithms for finding 3 points that pierce a set of pairwise
intersecting unit disks (disks of radius one). We also present a set of 9 pairwise intersecting unit
disks that cannot be pierced by 2 points. This shows that 3 points are sometimes necessary and
always sufficient to pierce pairwise intersecting unit disks. Finally, we present a deterministic linear
time algorithm for finding 5 points that pierce a set of pairwise intersecting arbitrary disks (disks of
arbitrary radii). Most of our algorithms employ elementary geometric transformations and we try to
exploit properties of arrangements of pairwise intersecting disks to avoid using LP-type machinery
in an effort to keep our algorithms simple.

1.2 Piercing Eight Disks with Three Points

In this section, we will prove that any set of 8 pairwise intersecting arbitrary disks can be pierced
by 3 points1. Before we come to the proof, we first present a useful geometric observation. We refer
to a set of 3 disks that have a common intersection point as a Helly triple. If 3 disks do not have a
common intersection point, we will refer to this triple as non-Helly.

Lemma 1. Every set of 4 disks whose centers are in convex position contains a Helly triple.

Proof. Let a,b,c and d be the centers of these disks in counterclockwise order along their convex
hull. We denote the disk centered at point p as D(p). Let x be a point on line segment ac that
lies in the intersection of D(a) and D(c). Let y be a point on line segment bd that lies in the
intersection of D(b) and D(d). x splits ac into two line segments, ax and xc, y splits bd into by
and yd. Among these four line segments, two of them must cross. With a suitable translation and
relabeling, assume ax and by cross. By the Triangle’s Inequality, |ax|+ |by| > |ay|+ |bx|. This implies
that either ax is larger than ay or by is larger than bx. In the former case, |ax| > |ay| implies that
y lies within D(a), so y ∈D(a)∩D(b)∩D(d). In the latter case, using a similar argument, we can
conclude that x ∈ D(a)∩D(b)∩D(c). Figure 1 shows the latter case and {D(a),D(b),D(c)} is a
Helly triple.

1We note that this result did not appear in the conference version of Har-Peled et al. [8], however, it appeared
independently and simultaneously in the masters thesis of the third author [17] and in the journal version of Har-Peled et
al. [9].
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Figure 1: If ax and by intersect and |by| > |bx|, then x lies within D(b) and the intersection of D(a),
D(b), and D(c) is nonempty.

By the Happy Ending theorem [5], it is known that every set of 5 points contains 4 points
that are in convex position. We can then use the above observation to prove the following theorem:

Theorem 1. Every set of 8 pairwise intersecting arbitrary disks can be pierced by at most 3 points.

Proof. By the Happy Ending theorem, we can find 4 points that are in convex position out of the 8
centers. Then by lemma 1, the 4 disks centered at these points contain a Helly triple. Let p1 be a
point that lies in the common intersection of this Helly triple. There now are 5 disks that may not
be pierced by p1. We can again find 4 disks whose centers are in convex position by the Happy
Ending theorem. Again, by Lemma 1 we find a new Helly triple among these 4 disks and we let p2
be a point that lies in the intersection of this new Helly triple. There are now 2 disks that may not
be pierced. We choose p3 to be a point that lies in the common intersection of the two remaining
disks.

2 Piercing Pairwise Intersecting Unit Disks

In this section, we first present our deterministic linear-time algorithms for piercing pairwise
intersecting unit disks by 3 points. Let D be a set of pairwise intersecting unit disks, each disk Di

is centered at ci = (xi , yi). We present two algorithms. The first algorithm finds 3 points that pierces
the set D, where the placement of the 3 points is based on the position of the smallest disk that
intersects all the disks. However, computing these 3 points in linear-time requires the machinery of
efficiently solving LP-type problems. We then give a much simpler linear-time algorithm that finds
the 3 points that pierce D that takes further advantage of the fact that the disks have unit radius.
Then we show a set of 9 pairwise intersecting unit disks that cannot be pierced by 2 points. We
denote the Euclidean distance between points a and b by |ab|.

A point a is to the left (resp. right) of a non-horizontal line l if the intersection point of the
horizontal line through a with l lies to the left (resp. right) of a. Similarly, a point a is above (resp.
below) a non-vertical line l provided that the intersection point of a vertical line through a with l is
above (resp. below) a.
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Inscribed circle

Figure 2: Inscribed circle of a non-Helly triple.

2.1 Algorithm using LP-type Machinery

Let {D1,D2,D3} be three unit disks that are pairwise intersecting but are non-Helly. Let D be the
smallest disk that is tangent to all three disks. We slightly abuse terminology and refer to D as the
inscribed circle of the non-Helly triple (see Figure 2). We begin this subsection with the following
geometric observation:

Lemma 2. The inscribed circle of a non-Helly triple of three pairwise intersecting unit disks has radius
at most 2√

3
− 1.

Proof. Let {D1,D2,D3} be the three unit disks that are non-Helly and let D be the inscribed circle of
these three disks. Let c be the center of D and let r be its radius. ∠c1cc2 +∠c2cc3 +∠c1cc3 = 2π,
so there must exist an angle that is at least 2π/3. Without loss of generality, assume ∠c1cc2 ≥ 2π/3.
|c1c| = |c2c| = 1+ r , so |c1c2| ≥

√
3(1+ r). Since D1 and D2 are two intersecting unit disks, we have

|c1c2| ≤ 2. Therefore,
√
3(1+ r) ≤ 2 which implies r ≤ 2√

3
− 1.

Löffler and van Kreveld [12] showed that given a set of disks, one can compute the smallest
disk that intersects every disk in the set in linear time since this problem is LP-type [3, 13]. We
summarize their result below.

Lemma 3. (Theorem 6 in [12]) Given a set D of n pairwise intersecting disks in the plane, we can
compute the smallest disk that intersects every disk in D in deterministic O(n) time. Note that if D is
Helly, this smallest disk has zero radius.

We can use Lemma 2 to prove the following theorem.

Theorem 2. Let D be a set of pairwise intersecting unit disks. In O(|D|) time, we can compute 3
points that pierce D.
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Figure 3: The location of P4, P5 and P6 and how D0 is covered by C4, C5 and C6.

Proof. We first compute the smallest disk that intersects every disk in D in deterministic linear time
using the LP-type approach outlined in Löffler and van Kreveld [12]. If the radius of this disk is zero,
then the piercing point is returned by their algorithm.

Otherwise, suppose that D is non-Helly and the radius of this disk is greater than zero. Let
D be this smallest disk that intersects every disk in D, and let c and r be its center and radius,
respectively. Our choice of D ensures that it is tangent to three disks in D; otherwise, the radius of
D can be reduced which contradicts minimality. The three disks tangent to D pairwise intersect
but are non-Helly. Therefore, D is the inscribed circle of these three disks. By Lemma 2, r ≤ 2√

3
−1.

Every disk Di ∈ D with center ci intersects D , so |cic| ≤ 2√
3
. Let D0 be a disk centered at c with

radius 2√
3
. By translation, we make c the origin. The centers of all the disks in D falls in D0. Let

P4 = (0,− 1√
3
), P5 = (12 ,

1
2
√
3
), P6 = (−12 ,

1
2
√
3
). Let C4, C5, and C6 be three disks of radius 1 and

centers P4, P5 and P6, respectively; see Figure 3. The points P4, P5, and P6 pierce every disk in D
since D0 ⊂ C4 ∪C5 ∪C6. We now show this.

Let A (resp. B) be the intersection point between C4 and D0 that falls in the third (resp.
fourth) quadrant. Any unit disk whose center falls in C4 ∩D0 is pierced by P4. This region is
illustrated in red in Figure 4. Now we want to prove that P5 and P6 pierce D0 \C4. Let C5’s
intersection point with D0 other than B be C , so the area illustrated in green in Figure 4 is covered
by P5. The red bounded area and the green bounded area intersects at two points, one is B, and
the other one is P6. P6 has distance 1 to both point A and point C. So the area C0 \ {C4 ∪C5} is
covered by P6.

2.2 Algorithm For Computing Three Piercing Points

The linear time algorithm outlined in the previous subsection found 3 piercing points but used
LP-type machinery in order to compute the 3 points. We now present an alternative proof of
Theorem 2 which results in a much simpler algorithm. We achieve this by further leveraging
the geometry of the situation. We begin with a simple geometric observation that follows from
elementary trigonometry.

Observation 1. Let D be a unit disk centered at the origin. For any θ in the range (0,π/2), D can
cover a rectangle with height 2sin(θ) and width 2cos(θ) when the center of D coincides with the
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Figure 4: P4, P5 and P6 cover D0.

center of the rectangle.

We now present an alternative, simpler linear-time algorithm that can compute 3 points that
pierce D.

Theorem 2. Let D be a set of pairwise intersecting unit disks. In O(|D|) time, we can compute 3
points that pierce D.

Proof. (Alternative proof) Let D1 be an arbitrary disk in D. We reduce its radius while keeping its
center c1 fixed until D1 is tangent to another disk D2 ∈ D. This can be completed in O(|D|) time
by computing the distance from c1 to all other disks in D. Notice that after the transformation of
D1, the disks in D are still pairwise intersecting and any set of points that pierces the new set of
disks also pierces the original set of disks. Let r1 be the radius of D1. After this transformation,
r1 ≤ 1, and D1 is tangent to D2. By a translation and rotation of the set D, we move c1 to the
origin and c2 to a point that lies on the positive y-axis with coordinate (0, r1 + 1). Let D0 be a
unit disk (not necessarily in D) with center c0 = (0, r1 − 1). Since r1 ≤ 1, D1 ⊆ D0. Any disk that
intersects D1 also intersects D0. Let D

′
0 and D ′2 be two disks with radius 2 and centers c0 and

c2, respectively. We will refer to D ′0 ∩D
′
2 as the lens formed by these two disks. See Figure 5(a)

where the boundary of the lens is highlighted in red. If a unit disk Di intersects D0 and D2, then
|c0ci | ≤ 2, |c2ci | ≤ 2 and ci ∈D ′0∩D

′
2. Thus, every unit disk in D has its center in the lens. We say

an area is covered by a point set P if every point in the area has distance at most 1 to at least 1
point in P . If we cover the lens with a set of points P , then every disk in D will be pierced. It is
not possible to cover the lens with 3 points, however, since the diameter of the lens is 2

√
3, the

centers lie in a restricted subregion of the lens. We show how to cover this restricted region with 3
points. Let β(a,b) represent the set of points in D ′0 ∩D

′
2 whose x-coordinate lies in the interval

[a,b] where a ≤ b and a,b ∈ [−
√
3,
√
3]. When the values of a and b are clear from the context, we

will refer to the region β(a,b) as β.

Let D3 be the disk in D whose center has maximum x-coordinate. In the sequel, we let xi
be the x-coordinate of the center ci of disk Di . Since D3 belongs to D, it must intersect D1 and
D2. We note that by the maximality of x3, we have x3 ≥ 0 since x3 ≥ x1 = 0. By construction, the
boundaries of D ′0 and D ′2 intersect at two points: (

√
3, r1) and (−

√
3, r1). Thus, c3 must either fall
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Figure 5: Illustration of the proof of Theorem 2.

on or to the left of the line x =
√
3. We conclude that x3 ≤

√
3. Therefore, we have 0 ≤ x3 ≤

√
3.

The disk D3 can be found in O(|D|) time by verifying the x-coordinate of the center of every disk
in D. For every disk Di ∈ D, |cic3| ≤ 2 since Di and D3 intersect. This also implies that |xix3| ≤ 2
since both Di and D3 are unit disks. Therefore, in addition to being in D ′0 ∩D

′
2, the x-coordinate

of all the centers lie in the interval [x3 − 2,x3]. This means that all the centers of the disks in D lie
in the region β(x3 − 2,x3), which is illustrated in red in Fig 5(b).

Therefore, if we can find 3 points that cover β, then those three points pierce every disk in
D. We now show how to find three points P1, P2, P3 that cover β. As noted above, we have that
0 ≤ x3 ≤

√
3. We consider two cases, namely when 1 ≤ x3 ≤

√
3 and 0 ≤ x3 < 1.

Case 1: 1 ≤ x3 ≤
√
3. To pierce all the disks in D we need to cover β(x3 − 2,x3). Let A

(resp. B) be the rightmost point of β on the boundary of D ′0 (resp. D ′2). The first point P1 is chosen
to be the point that falls in β and has distance 1 to both A and B. Thus, P1 lies on the bisector of
the line segment AB, so by construction, P1 lies on the line y = r1. Let C1 be a circle of radius 1
centered at P1; See Figure 6(a).

Let l1 be the vertical line x = x3 − 1
2 . First we prove that P1 always lies to the left of l1. Let

the midpoint of line segment AB be M . |AB| decreases as x3 increases; thus, |AB| is maximized
when x3 = 1. When x3 = 1, using the equations for D ′0 and D ′2, we note that |AB| = 2

√
3−2 <

√
3.

Since |AB| <
√
3, we have that |AM | <

√
3/2. Since △P1AM is a right triangle and |AP1| = 1, by

the Pythagorean theorem, |P1M | > 1/2. Therefore, P1 lies to the left of l1.

Let the intersection point of circle C1 and D ′0 different from A be labelled C, and the
intersection point of circle C1 and D ′2 different from B be labelled D . Recall that the y-coordinate
of P1 is r1. Since C1 has unit radius, it is tangent to both lines y = r1 + 1 and y = r1 − 1. By
construction, we also have that D ′0 is tangent to the line y = r1 +1 and D ′2 is tangent to the line
y = r1 − 1. Since the x-coordinate of P1 is at least zero and the circle C1 is tangent to these two

7



lines, both C and D lie on or to the left of the vertical line through P1. If the x-coordinate of P1 is
zero, then both C and D are the points of tangency and thus lie on the vertical line through P1.
Otherwise, they lie to the left of the line. See Figure 6(a).

Since the radius of C1 is 1, the radius of D ′0 is 2, and the point C lies to the left of l1, we
have that the clockwise arc from C to A on the boundary of D ′0 and the clockwise arc from B to D
on the boundary of D ′2 are both contained in C1. Therefore, the center of any unit disk of D that
lies on or to the right of l1 is contained in the disk C1. We now show how to compute points P2
and P3 to pierce all the disks that do not contain P1, namely the disks in D whose centers are in β
but outside disk C1. The exact coordinates of A, B, P1, P2, and P3 are given in Appendix A.

l1

A

B

M

C

D

P1

C1

E

F

G

H

E

F

G

H

NO

P2

P3

(a) Location of P1. (b) Remaining area to be covered. (c) Location of P2 and P3.

Figure 6: Illustration of the proof of Theorem 2.

Consider the rectangle formed by the following 4 points: E = (x3 − 1
2 , r1 + 1),F = (x3 −

1
2 , r1 − 1),G = (x3 − 2, r1 +1),H = (x3 − 2, r1 − 1). See Figure 6(b). Since D ′0 is tangent to the line
y = r1+1 at (0, r +1), and D ′2 is tangent to the line y = r1−1 at (0, r −1), the area β∩{x < x3− 1

2 }
as shown in Fig 6(b) is contained completely within the rectangle EFHG. If the points P2 and P3
cover this rectangle, then we are done. Let N be the midpoint of line segment EF and let O be
the midpoint of line segment GH . See Figure 6(c). We choose P2 to be the center of the rectangle
ENOG. Since the height of this rectangle is 1 and its width is 3/2, by Observation 1, P2 covers this
rectangle with θ = π/3. Select P3 to be the center of the rectangle NFHO. Again, by Observation 1,
P3 covers this rectangle since it has identical height and width to ENOG.

Case 2: 0 ≤ x3 < 1. Recall that the β region we need to cover is the set of points in
D ′0 ∩D

′
2 whose x-coordinate lies in the interval [x3 − 2,x3]. Since the leftmost point on the lens

formed by D ′0 and D ′2 has coordinates (−
√
3, r1), we note that the left endpoint of this interval

cannot be less than −
√
3. Therefore, the left endpoint lies in the range [−

√
3,−1]. If we reflect all

the disks about the y-axis, then the x-coordinates of all the disks lies in the interval [−x3, |x3 − 2|].
Since x3 < 1, we have that |x3 − 2| > 1. Therefore, after reflection, the right endpoint of the interval
for β lies in the range [1,

√
3]. This is exactly the range for Case 1.
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2.3 A Lower Bound

We now present a set of 9 pairwise intersecting unit disks that cannot be pierced by 2 points. See
Figure 7 for an illustration of these disks in a nutshell; details are given in the proof of Theorem 3.

Figure 7: Nine unit disks that cannot be pierced by 2 points.

Theorem 3. There exists a set of 9 pairwise intersecting unit disks that cannot be pierced by 2 points.

Proof. Follow Figure 8. We begin the construction by placing 3 unit disks D1,D2,D3 centered at
(0,0), (2,0), (1,

√
3) respectively. These points are the vertices of an equilateral triangle with side

length 2. Notice that these disks are pairwise tangent. We denote the center of Di by ci . Let Ci

be the circle of radius 2 centered at ci . The intersection of C1, C2, and C3 is a reuleaux triangle,
which is illustrated in red in Figure 8. The center of any unit disk, that intersects Di , lies in Ci .
Therefore the center of any unit disk, that intersects the three disks D1, D2, and D3, lies in the
reuleaux triangle. We then introduce 6 more unit disks as follows where ϵ = 0.01:

• D ′1 with center c′1 = (2−
√
4− ϵ2,ϵ) on C2.

• D ′′1 with center c′′1 = (ϵ,
√
3−

√
4− (ϵ − 1)2) on C3.

• D ′2 with center c′2 = (2− ϵ,
√
3−

√
4− (ϵ − 1)2) on C3.

• D ′′2 with center c′′2 = (
√
4− ϵ2,ϵ) on C1.

• D ′3 with center c′3 = (1+ ϵ,
√
4− (1 + ϵ)2) on C1.

• D ′′3 with center c′′3 = (1− ϵ,
√
4− (1 + ϵ)2) on C2.

We show that D = {D1,D
′
1,D

′′
1 ,D2,D

′
2,D

′′
2 ,D3,D

′
3,D

′′
3 } is a desired set. Given the above

coordinates of the centers of the disks in D, one can verify that by construction, the distance
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Figure 8: Illustration of the construction of a set of 9 pairwise intersecting unit disks that cannot be
pierced by 2 points.

between any two centers is at most 2 and thus the disks are pairwise intersecting. Next, we note that
by construction, the disks X,Y ,Z with X ∈ {D1,D

′
1,D

′′
1 }, Y ∈ {D2,D

′
2,D

′′
2 }, and Z ∈ {D3,D

′
3,D

′′
3 }

form a non-Helly triple.

Now we show that D cannot be pierced by two points. For the sake of a contradiction,
suppose that points p1,p2 pierce all the disks in D. Then one of these points must pierce at least
two of the disks D1, D2 and D3 since these three disks form a non-Helly triple. Without loss of
generality, we may assume that p1 pierces D1 and D2 (as in Figure 8), and thus p1 = (1,0) since
|c1c2| = 2. By construction, p1 does not pierce D ′1, D

′′
2 , D3, D

′
3 and D ′′3 since the distance from p1

to the centers of each of those circles is strictly greater than 1. Thus, these disks must be pierced by
p2, and in particular p2 ∈ D ′1 ∩D

′′
2 ∩D3. However, since D ′1,D

′′
2 ,D3 is a non-Helly triple, these

three disks cannot be pierced by 1 point.

3 Piercing Pairwise Intersecting Arbitrary Disks

We now consider a set D of pairwise intersecting disks of arbitrary sizes. Each disk Di ∈ D is
described by its center ci and its radius ri . Before we introduce our algorithm that computes a
set of 5 points that pierce the given set of disks, we first introduce an algorithm that inspired our
algorithm. This algorithm computes 7 points that pierce the given set of disks and it does not
require solving any LP-type problem.

3.1 Piercing with Seven Points

Even though 4 points are always sufficient to pierce any set of pairwise intersecting disks [4, 15, 16],
finding such 4 points is difficult. Carmi et al. [2] presented a linear time algorithm that is quite
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complex using LP-type machinery. Our goal is to find a simpler algorithm that avoids using heavy
machinery but relies more on simple geometric properties. We begin by showing how to find
a piercing set of 7 points whose coordinates can be computed in linear time only using simple
geometric tranformations. Our proof is a modification of the proof in [1]. The 7 points are the
vertices of a regular hexagon and its center.

Figure 9: {P1, P2, P3, P4, P5, P6, P7} pierce any disk with radius ≥ 1 and intersects D1.

Theorem 4. (Theorem 2 in [1]) Let D be a set of pairwise intersecting disks in the plane. Then in linear
time one can find 7 points that pierce all disks in D.

Proof. Let D1 ∈ D be the smallest disk in D. Finding this disk takes linear time. By scaling and
translation, we assume D1 is centered at the origin and its radius is 1. Let P1 = (0,0), P2 = (

√
3,0),

P3 = (
√
3
2 , 32 ), P4 = (−

√
3
2 , 32 ), P5 = (−

√
3,0), P6 = (−

√
3
2 ,−32 ), P7 = (

√
3
2 ,−32 ) as depicted in Fig 9; the

points P2, P3, P4, P5, P6, P7 are the vertices of a regular hexagon with sides of length
√
3 centered at

the origin. We prove that these 7 points pierce D.
Let Di ∈ D be a disk with center ci and radius ri . Since D1 is the smallest disk in D, we

have that ri ≥ 1. Since points P2, P3, . . . , P7 are the vertices of a regular hexagon, there must exist a
j ∈ {2,3, . . . ,7} such that ∠PjP1ci ≤ π

6 . Let θ = ∠PjP1ci . By the law of cosines,

|ciPj |2 = |ciP1|2 + |P1Pj |2 − 2|ciP1||P1Pj |cos(θ)

|P1Pj | =
√
3 since these points all have distance

√
3 to the origin. |ciP1| ≤ ri + 1 since Di and

D1 intersect. We have that cos(θ) ≥ cos(π6 ) since θ ≤ π
6 . Therefore, −2|ciP1||P1Pj |cos(θ) ≤

−2|ciP1||P1Pj |cos(π6 ). By replacing terms in the equation, we get

|ciPj |2 ≤ |ciP1|2 + (
√
3)2 − 2

√
3|ciP1|cos(

π
6
)

By simplification, we get
|ciPj |2 ≤ |ciP1|2 +3− 3|ciP1|
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By rearranging terms in the equation, we get

|ciPj |2 ≤ (|ciP1| − 1)2 − |ciP1|+2

When |ciP1| ≥ 2, (|ciP1| −1)2 − |ciP1|+2 ≤ r2i +2− |ciP1| ≤ r2i . Therefore, |ciPj | ≤ ri and Di

contains Pj . If |ciP1| ≤ 1, ci falls in D1. Then Di is pierced by P1 since ri ≥ 1. When 1 < |ciP1| < 2
then we have that (|ciP1| − 1)2 − |ciP1|+2 ≤ 1, therefore |ciPj | ≤ 1 which implies that Pj pierces Di

since ri ≥ 1.

3.2 Piercing with Five Points

In this section we present a simple linear-time algorithm for piercing pairwise intersecting disks
with five points. Recall that each disk Di ∈ D is described by its center ci and its radius ri . Let D1
be the smallest disk in D. We shrink D1 while fixing its center at c1 until D1 becomes tangent to
another disk, say D2. This can be done in linear time by computing the distance of c1 to all other
ci ’s to determine the minimum amount required to shrink D1 until it is tangent to another disk.
In this new setting, disks in D are still pairwise intersecting and any set of points that pierces the
new set of disks also pierces the original set of disks. After scaling, rotation and translation, assume
that D1 has radius 1 and is centered at the origin and D2 is centered on the positive y-axis; these
transformations can be performed in linear time.

The rest of our algorithm relies on the following two geometric lemmas whose proofs are
constructive. We prove these lemmas in Section 3.2.1 and Section 3.2.2. In the lemmas, we let

P1 = (0,0), P2 = (
√
3,0), P3 = (

√
3
2 , 32 ), P4 = (−

√
3
2 , 32 ), P5 = (−

√
3,0) where P2, P3, P4, P5 are four

vertices of a regular hexagon with sides of length
√
3 centered at the origin P1, as in Figure 10.

These are 5 of the 7 points defined in Theorem 4 that are on or above the line y = 0. Let
P = {P1, P2, P3, P4, P5}.

Lemma 4. If the radius of D1 is 1 and the radius of D2 is at most 5+2
√
6, then P pierces D.

Lemma 5. If the radius of D1 is 1 and the radius of D2 is larger than 5+2
√
6 and P does not pierce

D, then we can find in constant time a different set of 5 points that pierces D.

These two lemmas are sufficient for proving the existence of 5 piercing points for arbitrary
disks. Our piercing algorithm is given below

Algorithm:

1. Find the smallest disk D1 ∈ D

2. Reduce the radius of D1 until D1 is tangent to a disk in D, say D2

3. By scaling, rotation and translation of D, let the center of D1 be the origin and the radius of
D1 be 1. Let D2 be centered on the y-axis above D1

4. If r2 ≤ 5+2
√
6, then return P as a piercing set for D

12



P1 P2

P3
P4

P5

D1

D2

t1t2

Figure 10: The first candidate set of 5 points and illustration for the proof of Lemma 4.

5. If r2 > 5+2
√
6 and P does not pierce D, then find another set of 5 points by Lemma 5 and

return it as a piercing set for D.

Theorem 5. Given a set of pairwise intersecting arbitrary disks in the plane, in deterministic linear
time, we can find 5 points that pierce all the disks.

Proof. Let D be a set of pairwise intersecting arbitrary disks. We run the above algorithm on D. If
r2 ≤ 5+2

√
6, by Lemma 4, P pierces D. If r2 > 5+2

√
6 and there exists at least one disk in D that

is not pierced by any of the 5 points in P , then by Lemma 5 we can find 5 points that pierce D.
The correctness of the algorithm comes from Lemma 4 and Lemma 5, which we prove in

Section 3.2.1 and Section 3.2.2, respectively. Step 1 of the algorithm clearly takes linear time. Step 2
can also be completed in linear time by computing the distance from c1 to all other centers in D .
The geometric transformations of Step 3 take linear time. The points P1 to P5 can be obtained in
constant time after the transformation. Then checking whether these 5 points pierce D takes linear
time. If these 5 points do not pierce D, then by Step 5, we can compute a new set of 5 points that
pierce D in constant time by Lemma 5.

We now present a few well-known geometric observations about circles that will be used in
Section 3.2.1 and Section 3.2.2. These are well-known properties of circles [14].

Observation 2. Let a,b be two points on an arbitrary line L. For convenience, we rotate and translate
L such that it coincides with the x-axis. Without loss of generality, assume that a < b. Let D be any
disk with radius r whose intersection with the x-axis is the interval [a,b] and whose center c is on or
below the x-axis. Denote by D+ the set of points in D that are on or above the x-axis. All points in D+

have x-coordinate in the range [a,b] and the highest point in D+ lies on the line y = r(1− cos(θ/2)),
where θ = ∠acb. For any other disk C centered on or below the x-axis with radius r ′ ≥ r and whose
intersection with the x-axis is [a′ ,b′] ⊆ [a,b], we have that C+ ⊆D+. Moreover, if a′ and b′ are in the
open interval (a,b), then the highest point in C+ is strictly below the line y = r(1− cos(θ/2)).

3.2.1 Proof for Lemma 4

Proof. Recall points P1 to P5 where P1 = (0,0), P2 = (
√
3,0), P3 = (

√
3
2 , 32 ), P4 = (−

√
3
2 , 32 ), P5 =

(−
√
3,0); see Figure 10. Let t1 be the line with a positive slope that is tangent to D1 and passing
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through P2. Let t2 be the line with a negative slope that is tangent to D1 and passing through

P5. See Figure 10. The equation of t1 is t1 =
√
2
2 x −

√
6
2 and the equation of t2 is t2 = −

√
2
2 x −

√
6
2 .

Since D2 is centered on the positive y-axis, D2 is tangent to both t1 and t2 when r2 = 5+ 2
√
6.

Therefore, when r2 ≤ 5+2
√
6, D2 falls on or above t1 and t2.

We now prove that P1, . . . P5 pierce D when r2 ≤ 5+2
√
6. It is implied from the proof of

Theorem 4 that any disk whose center lies in the first or the second quadrant is pierced by these 5
points. We show that any disk in D whose center falls in the third or fourth quadrant is pierced by
at least one of {P1, P2, P5}. If all such disks are pierced by at least one of these points, then we are
done. So we assume that there exists at least one disk, say D3, that is not pierced by any of these
three points. Without loss of generality, assume that the center c3 of D3 lies in the fourth quadrant.
We will prove that P1 or P2 must pierce D3. Recall that by construction and transformation, D2 is
tangent to the line y = 1 and lies above this line. We will use the line y = 1, t1 and t2 to derive a
contradiction since any disk whose center is below these lines, must intersect these lines to intersect
D2.

Define the interval [a,b] := D3 ∩ t1. If P2 ∈ [a,b], then we have a contradiction since
P2 ∈D3. Therefore, either [a,b] is strictly to the right or strictly to the left of P2. We first consider
the former case, where [a,b] is strictly to the right of P2. By construction, D1 is on or above t1 and
strictly to the left of P2. By Observation 2, the portion of D3 on or above t1 is strictly to the right
of P2. Therefore, D3 does not intersection D1 which is a contradiction.

We now consider the case where [a,b] is strictly to the left of P2. We further refine this
case by the location of c3. Either c3 is on or to the right of the vertical line through P2 or it is
strictly to the left of this vertical line. In both cases, the contradiction we derive is that D2 does not
intersect D3.

We start with the case where c3 is strictly to the left of P2. In this case, by Observation 2,
the highest point that D3 can reach above the x-axis is on the line y =

√
3/2. However, since√

3/2 < 1, D3 does not reach the line y = 1 and thus cannot intersect D2, which is a contradiction.

Finally, we consider the case where c3 is strictly to the right of P2. Since [a,b] lies strictly
to the left of P2 on t1, by Observation 2, the portion of D3 to the right of P2 lies below t1, and thus
does not intersect D2. In addition, the perpendicular projection of c3 onto the x-axis lies strictly to
the right of P2. This means, by Observation 2, that the portion of D3 to the left of P2 lies below the
x-axis and thus cannot intersect D2. Therefore, D3 does not intersect D2 which is a contradiction.
We conclude that either P1 or P2 pierces D3.

3.2.2 Proof for Lemma 5

Proof. Recall the lines t1, t2, and the point set P from the proof of Lemma 4. Since r2 > 5+2
√
6,

D2 intersects both t1 and t2. Since P does not pierce D, there exists a disk, say D3 ∈ D, that is
not pierced by P . The disk D3 intersects both D1 and D2. The center c3 of D3 cannot lie in the
first or second quadrant since otherwise it must contain one point of P as is implied from the
proof of Theorem 4. Without loss of generality, we may assume that the center c3 lies in the fourth
quadrant. This is because if all the disks of D that are not pierced by P only have a center in the
third quadrant, then take every disk in D and reflect its center about the line x = 0. Then in this
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new set, there is a disk that is not pierced by P whose center lies in the fourth quadrant, and the
arguments below apply.

The proof proceeds as follows. Since P does not pierce D, we construct in constant time a
set P ′ of 5 points that does pierce D. The locations of the points of P ′ are based on properties
derived from the positions of D1, D2 and D3. We first derive the properties deduced from the fact
that D3 is not pierced by P that are essential in the construction of P ′ . We then prove that P ′

pierces D when P does not.

By Observation 2, since D3 is not pierced by P1, D3 can only intersect D2 on the right side
of the y-axis. This setting is depicted in Figure 11(a). Since the interior of D1 lies completely below
the line y = 1 and the interior of D2 lies completely above this line, any disk in D \ {D1,D2} must
intersect this line in order to intersect both D1 and D2.

Define the polygonal line

ℓ :

y = 0, x ≤
√
3

t1, x >
√
3

as shown in Figure 11(a). We prove the following claim about ℓ.

Claim 1. If D3 is a disk in D that is not pierced by P and whose center lies in the fourth quadrant
then D3 lies strictly below ℓ.

Proof. Recall that we assume, without loss of generality, that c3 is in the fourth quadrant. Let a,b
be the leftmost and rightmost point of D3 ∩ ℓ, respectively. If a is on the line y = 0 and b is on t1,
then by convexity of D3, P2 is contained in D3 which is a contradiction. Therefore, we only need to
consider the case where a,b are both on the line y = 0 or they are both on the line t1.

In the former case, by Observation 2, the highest point that D3 can reach above the x-axis
is on the line y =

√
3/2. However, since

√
3/2 < 1, D3 does not reach the line y = 1 and thus

cannot intersect D2, which is a contradiction.

In the latter case, by construction, D1 is on or above t1 and strictly to the left of P2. By
Observation 2 the portion of D3 on or above t1 is strictly to the right of P2. Therefore, D3 does not
intersection D1 which is a contradiction.

Therefore, we conclude that D3 does not intersect ℓ and lies strictly below ℓ.

Claim 1 implies that any disk in D whose center falls above ℓ must cross ℓ in order to
intersect with D3.

We now construct a point set P ′ = {P6, P7, P8, P9, P10} and then show that P ′ pierces D.
The location of these points fundamentally relies on the fact that the set P = {P1, P2, . . . , P5} does
not pierce D and repeatedly uses the fact that D1 and D2 must each intersect D3. It also uses
the fact that D3 is not pierced by P and that D3 lies below ℓ. We begin by setting P6 = (0,−3).
We now show how to construct P7, P8, P9, and P10. The method of construction gives certain
geometric properties to these points which are then used to show why they pierce D when P does
not. The approximate coordinates of these points appears in the table below and the derivation of
the coordinates of these points is given in Appendix B.
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• Computing P7: Let C1 (resp. C2) be the circle passing through P6 that is tangent to disk D1
and line y = 1 in the left side (resp. right side) of the y-axis, as in Figure 11(b). Let C3 be the
circle that is centered above y = 1 and that is tangent to the disk D1, the line t1 and to the
x-axis. The disks C1 and C3 intersect at two points, where we pick the intersection point
that is closer to the origin as the point P7; see Figure 11(c).

• Computing P8: Now let C4 be a circle of radius 1 that passes though P7 and that is tangent
to the x-axis, and let C5 be a circle of radius 1 that passes through P7 and that is tangent to
the line y = 1. The point P8 is the intersection point between C4 and C5 that is different
from P7. See Figure 11(d) for an illustration.

• Computing P9: Let C6 be a circle of radius 1 that passes through P8 and that is tangent to
the line y = 1. The intersection point of C2 and C6 that falls in the first quadrant is P9, as
depicted in Figure 11(e).

• Computing P10: Consider a circle C7 of radius 1 through P9 and tangent to D1. The point
P10 is the intersection point of C3 and C7 that is closer to the origin, as in Figure 11(f).

Points P6 P7 P8 P9 P10
x-coord 0 −2.139 −0.410 1.473 0.696
y-coord −3 0.541 0.459 0.101 1.231

Table 1: Approximate coordinates of the piercing points

Now that all five points in P ′ have been introduced, we prove that these five points pierce
all disks in D. Consider the convex quadrilateral Q formed by P6, P7, P9, and P10, as in Figure 12.
We begin by showing that these four points pierce any disk of D whose center lies outside the
quadrilateral.

By construction, since the disk D1 is contained inside Q, any disk D whose center is
outside Q must intersect the boundary of Q in order to intersect D1. Suppose that there is a disk
D4 ∈ D whose center c4 is outside Q and that is not pierced by P ′ . We note that D4 can only
intersect one edge of Q, otherwise, by the fact that c4 is outside Q and convexity of disks and Q,
D4 will contain one of the vertices of Q in its interior which is a contradiction. The key behind
this proof is that the geometric properties of the circles C1 . . .C7 in addition to the property of ℓ
shown in Claim 1 allows us to prove that P ′ pierces D. We now consider the four cases where D4
strictly intersects the edge P7P10, P6P7, P6P9 or P9P10, respectively. In each case, we will show that
D4 must contain one of the four vertices of Q in its interior, otherwise, D4 violates the fact that it
intersects every disk in D.
Case D4 properly intersects P7P10: Since c4 is outside Q and D4 properly intersects P7P10, c4
must lie above the line L through P7P10. By construction, C3 is tangent to ℓ and D1. Therefore,
since D4 intersects D1, we note that D4 must intersect the boundary of C3 in order to intersect D1.
If D4 is tangent to C3, then it is completely contained in C3 and thus does not intersect ℓ, which is
a contradiction.

Now, consider the path P7, P8, P10. Since D4 properly intersects P7P10, in order to intersect
ℓ, it must intersect P7P8 or intersect P8P10 or intersect both. We address each of these subcases in
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turn. We first address the subcase where D4 intersects both P7P8 and P8P10. Let C be the unique
circle through P7, P8, P10. By construction C does not intersect ℓ. Therefore, since D4 intersects both
P7P8 and P8P10, the portion of D4 below the line through P7P10 is contained in C by Observation 2.
Therefore, D4 does not intersect ℓ in this case, which is a contradiction.

D2

t1
D1

y = 1

y = 0
D3

C1 C2

P6

ℓ

(a) Boundaries that disks in D must cross. (b) Location of P6.

C3

C2C1

P6

P7

ℓ

t1

C4

C5

P7 P8

P6

ℓ

(c) Location of P7. (d) Location of P8.

C2
C6

P9
P8P7

P6

ℓ

C7

P10

P9P8P7

P6

C3

ℓ

(e) Location of P9. (f) Location of P10.

Figure 11: Illustration of the proof for Lemma 5.
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We next address the subcase where D4 properly intersects P7P8. By construction, C4 is a
unit disk whose center lies on the line y = 1 with P7 and P8 on its boundary. Let C−4 be the portion
of C4 that lies on or below the line through P7P8. Let D

−
4 be defined anagolously. By Observation 2,

we have that D−4 ⊂ C−4 , which means that D4 does not intersect ℓ, which is a contradiction since
D4 intersects D3. A similar argument shows that for the subcase where D4 properly intersect P8P10,
we obtain a contradiction since the unit disk with P8 and P10 on its boundary with center lying
above the line through P8P10 does not intersect ℓ.

Case D4 properly intersects P6P7: Both P6 and P7 lie on C1, and C1 is tangent to the line y = 1.
This means that if D4 intersects the line y = 1, it must properly intersect the segment P7P8. By
construction, we have that C5 is a unit disk with P7 and P8 on its boundary that is tangent to and
lies below the line y = 1. Let C+

5 be the portion of C5 that lies on or above the line through P7P8.
Let D+

4 be defined anagolously. By Observation 2, we have that D+
4 ⊂ C+

5 , which means that D4
does not intersect the line y = 1, which is a contradiction since D4 intersects D2.

Case D4 properly intersects P6P9: Both P6 and P9 lie on C2, and C2 is tangent to the line y = 1.
This means that if D4 intersects the line y = 1, it must properly intersect the segment P8P9. By
construction, we have that C6 is a unit disk that is tangent to and lies below the line y = 1 and
has P8 and P9 on its boundary. An argument similar to the one in the previous case allows us to
conclude, using Observation 2, that D4 cannot intersect the line y = 1. This is a contradiction since
D4 intersects D2.

Case D4 properly intersects P9P10: Any disk that intersects D1 between P9 and P10 must contain
one of these two points. Otherwise, by Observation 2, its radius is smaller than 1, since C7 is a unit
disk with P9 and P10 on its boundary tangent to D1. We note that D4 has radius at least 1 since
D1 has radius 1 and is the smallest disk in D. By Observation 2, we conclude that D4 must contain
P9 or P10 since it intersects D1.

P10

P9

P6

P7

P8

ℓ

Figure 12: The points P6, P7, P9, P10 form a quadrilateral that contains D1.

Now we show how the disks of D centered inside the quadrilateral are pierced by points in
P ′ . We divide the quadrilateral into four triangles, as in Figure 12 and look at the case when the
center of D4 lies in each of these triangles.

Case c4 ∈ △P6P7P8: In this case, in order for D4 to intersect the line y = 1, it must properly
intersect P7P8. By construction, C5 is a unit disk whose center lies on the line y = 0 with P7 and
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P8 on its boundary. By Observation 2, we have that any disk whose radius is at least 1 and properly
intersects P7P8 cannot intersect the line y = 1. Moreover, it is not possible for D4 to intersect y = 1
to the left of P7 because otherwise its center would not be in Q. Therefore, we have a contradiction.

Case c4 ∈ △P6P8P9: An argument similar to the previous case applies here with the circle C6
playing the role played by circle C5 in the previous case.

Case c4 ∈ △P7P8P10: To intersect ℓ in this case, D4 must intersect the segment P7P8 or the segment
P8P10. The arguments presented in the case where D4 properly intersects P7P10 apply here since
D4 has radius at least 1.

Case c4 ∈ △P8P9P10: Any disk whose center lies in △P8P9P10 must contain one of these three
vertices because the diameter of this triangle is at most 2.

We conclude that any disk D4 is pierced by at least one point in P ′ . Also D1, D2 and D3
are pierced by P8, P10, and P6, respectively.

Given D1, D2, t1, and t2, the point set P ′ can be found in constant time.

4 Conclusion

In this paper, we gave two simple linear time algorithms for finding 3 piercing points and 5 piercing
points for pairwise intersecting unit disks and pairwise intersecting arbitrary disks, respectively.
However, it is still not known whether we can find an algorithm for finding a piercing point set of
size 4 for any set of pairwise intersecting arbitrary disks without solving an LP-type problem. For
the lower bound, the remaining open question is whether any set of 9 pairwise intersecting disks
can be pierced by 3 points or not, as it is known that any set of 8 pairwise intersecting disks can
be pierced by 3 points [15]. Another interesting open question is whether we can find an efficient
algorithm that decides the optimal number of piercing points for any set of pairwise intersecting
arbitrary disks.

Acknowledgements

The authors would like to thank the reviewers for their detailed and comprehensive comments which
greatly improved the presentation.

References

[1] P. Bose, P. Carmi, and T. Shermer. Piercing pairwise intersecting geodesic disks. CGTA - Special Issue in
Memoriam, Godfried Toussaint, 2020.

[2] P. Carmi, M. J. Katz, and P. Morin. Stabbing pairwise intersecting disks by four points. CoRR, abs/1812.06907,
2018.

[3] B. Chazelle and J. Matoušek. On linear-time deterministic algorithms for optimization problems in fixed
dimension. Journal of Algorithms, 21(3):579 – 597, 1996.

[4] L. Danzer. Zur Lösung des Gallaischen Problems über Kreisscheiben in der Euklidischen Ebene. Studia
Scientiarum Mathematicarum Hungarica, 21(1-2):111–134, 1986.

[5] P. Erdös and G. Szekeres. A combinatorial problem in geometry. Compositio Mathematica, 2:463–470, 1935.

[6] B. Grünbaum. On intersections of similar sets. Portugal. Math., 18:155–164, 1959.

19



[7] H. Hadwiger and H. Debrunner. Ausgewählte Einzelprobleme der kombinatorischen Geometrie in der
Ebene. Enseignement Math. (2), 1:56–89, 1955.

[8] S. Har-Peled, H. Kaplan, W. Mulzer, L. Roditty, P. Seiferth, M. Sharir, and M. Willert. Stabbing pairwise
intersecting disks by five points. In ISAAC, volume 123 of LIPIcs, pages 50:1–50:12. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018.

[9] S. Har-Peled, H. Kaplan, W. Mulzer, L. Roditty, P. Seiferth, M. Sharir, and M. Willert. Stabbing pairwise
intersecting disks by five points. Discret. Math., 344(7):112403, 2021.

[10] E. Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahresbericht der Deutschen
Mathematiker-Vereinigung, 32:175–176, 1923.

[11] E. Helly. Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten. Monatshefte für
Mathematik, 37(1):281–302, 1930.

[12] M. Löffler and M. J. van Kreveld. Largest bounding box, smallest diameter, and related problems on
imprecise points. Comput. Geom., 43(4):419–433, 2010.

[13] J. Matousek, M. Sharir, and E. Welzl. A subexponential bound for linear programming. Algorithmica,
16(4/5):498–516, 1996.

[14] D. Pedoe. Geometry: A comprehensive course. Courier Corporation, 2013.

[15] L. Stachó. Über ein Problem für Kreisscheibenfamilien. Acta Scientiarum Mathematicarum (Szeged),
26:273–282, 1965.

[16] L. Stachó. A gallai-féle körletuzési probléma megoldása. Mat. Lapok, 32(1-3):19–47, 1981-84.

[17] Y. Wang. Simple linear time algorithms for piercing pairwise intersecting disks. Master’s thesis, Carleton
University, Ottawa, Canada, 2021.

20



A Coordinates of points in Theorem 2

Here are the coordinates of points in the proof of Theorem 2:

A =
(
x3,

√
4− x23 + r1 − 1

)

B =
(
x3,−

√
4− x23 + r1 +1

)

P1 =

x3 −
√
2
√
4− x23 + x23 − 4, r1


P2 =

(
x3 −

5
4
, r1 +

1
2

)

P3 =
(
x3 −

5
4
, r1 −

1
2

)
B Coordinates of points in Lemma 5

For each point Pi , let xi be its x-coordinate and yi be its y-coordinate, and for each circle Ci , let (x′i , y
′
i )

be its center and r ′i be its radius. We summarize these coordinates in the tables below, followed by the
derivations of the coordinates of points Pi and equations of circles Ci

2:

Points P6 P7 P8 P9 P10
x-coord 0 −2.139 −0.410 1.473 0.696
y-coord −3 0.541 0.459 0.101 1.231

Table 2: Approximate coordinates of the piercing points

Circles C1 C2 C3 C4 C5 C6 C7
x-coord of center −4 4 −7.815 −1.251 −1.298 0.478 1.684
y-coord of center −3 −3 30.038 1 0 0 1.078

radius 4 4 30.038 1 1 1 1

Table 3: Approximate coordinates of the centers and radii of the circles used to compute Pi ’s.

P6 = (0,−3)
C1 : (x+4)2 + (y +3)2 = 16, where x′1 = −4, y

′
1 = −3 and r ′1 = 4.

C2 : (x − 4)2 + (y +3)2 = 16, where x′2 = 4, y′1 = −3 and r ′2 = 4.

2We provide approximate coordinates in addition to the exact coordinates since the exact coordinates, although simple
to compute, become quite messy with many radicals. The approximate coordinates are easier to understand and the
arguments presented in the proof of Lemma 5 still hold with the approximate coordinates presented here
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C3 : (x − x′3)2 + (y − y′3)2 = (r ′3)
2, where the equations for the coordinates of the center of C3 are

x′3 = −
√
1+2r ′3 since C3 is tangent to D1 and y′3 = r ′3 since C3 is tangent to the x-axis. Given the fact that

C3 is tangent to the x-axis, tangent to D1 and tangent to the line t1, there are three possible disks that
satisfy these equations. One where the center is in the first quadrant, one where the center is in the second
quadrant and one where the center is in the fourth quadrant. For the proof, we want the one where the

center is in the second quadrant. Specifically, we have x′3 = −
√
17+6

√
6+4

√
27+11

√
6 ≈ −7.81509 and

y′3 = r ′3 = 8+3
√
6+2

√
27+11

√
6 ≈ 30.0378.

We obtain P7 by intersecting C1 with C3 and taking the intersection closest to D1. The exact form
for the solution is easily obtained from the equations of C1 and C3. We first provide an approximate solution:
P7 ≈ (−2.139,0.541).

The exact coordinates for P7 are:

P7 =

 (−2r
′
3 − 6)y7 + (x′3)

2 − 9
2x′3 +8

,
−b7 +

√
b27 − 4a7c7
2a7


a7 = (−2r ′3 − 6)

2 + (2x′3 +8)2

b7 = 2(−2r ′3 − 6)
(
(x′3)

2 − 9
)
+8(2x′3 +8)(−2r ′3 − 6) + 6(2x′3 +8)2

c7 =
(
(x′3)

2 − 9
)2

+8(2x′3 +8)
(
(x′3)

2 − 9
)
+9(2x′3 +8)2

To compute P8, we consider two unit disks C4 and C5 centered on the lines y = 1 and y = 0,
respectively, such that P7 is on the boundary of both C4 and C5. Since P7 is on C4, we have that x′4 is the
solution to the equation (x′4 −x7)

2 + (1− y7)2 = 1. Thus, (x′4, y
′
4) ≈ (−1.251,1). With a similar reasoning, we

get that (x′5, y
′
5) ≈ (−1.298,0). Given the coordinates of the centers of the unit disks C4 and C5, we compute

the other intersection point: P8 ≈ (−0.410,0.459). The exact coordinates are below:

C4 :
(
x −

√
2y7 − y27 − x7

)2
+ (y − 1)2 = 1

C5 :
(
x −

√
1− y27 − x7

)2
+ y2 = 1

P8 =

2y8 + q1
q2

,
−b8 −

√
b28 − 4a8c8
2a8


q1 =

(√
1− y27 + x7

)2
−
(
−
√
2y7 − y27 − x7

)2
− 1

q2 = 2
(√

1− y27 + x7

)
− 2

(√
2y7 − y27 + x7

)
a8 = 4+ q22

b8 = 4q1 − 4q2
(√

1− y27 + x7

)
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c8 = q21 + q22

(√
1− y27 + x7

)2
− 2q1q2

(√
1− y27 + x7

)
− q22

To compute P9, we compute the center of C6 which is centered on the line y = 0. Given that we
have the coordinates of P8, we note that (x′6, y

′
6) ≈ (0.478,0). To obtain P9, we compute the intersection of

C6 with C2 and take the intersection point closest to the line y = 1. Thus, P9 ≈ (1.473,0.101). The exact
coordinates are below:

C6 :
(
x −

√
1− y28 − x8

)2
+ y2 = 1

P9 =

−b9 +
√
b29 − 4a9c9
2a9

,
q3x9 + q4

6


q3 = 8− 2

(√
1− y28 + x8

)

q4 =
(√

1− y28 + x8

)2
− 10

a9 = 36+ q23

b9 = 2q3q4 +36q3 − 288

c9 = q24 +36q4 +324

Since C7 is a unit disk with P9 on its boundary and tangent to D1, with the coordinates of P9, we
obtain that (x′7, y

′
7) ≈ (1.684,1.078). Finally, by intersecting C7 with C3, we obtain P10 ≈ (0.696,1.231).

The exact coordinates are below:

C7 is centered at 
√
4− (y′7)2,

−b10 +
√
b210 − 4a10c10
2a10


a10 = 4x29 +4y29

b10 = −4y9(x29 + y29 +3)

c10 =
(
x29 + y29 +3

)2
− 16x29

P10 =

x′7 −
√
1− (y10 − y′7)2,

−b11 −
√
b211 − 4a11c11
2a11


q5 = (x′7)

2 + (y′7)
2 − (x′3)

2 − (y′3)
2 + (r ′3)

2 − 1− (2x′7 − 2x
′
3)x
′
7

a11 = (2y′3 − 2y
′
7)

2 + (2x′7 − 2x
′
3)

2

b11 = 2q5(2y
′
3 − 2y

′
7)− 2y

′
7(2x

′
7 − 2x

′
3)

2

c11 = q25 +
(
(y′7)

2 − 1
)
(2x′7 − 2x

′
3)

2
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